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Non-Markoffian Diffusion in a One-Dimensional 
Disordered Lattice 
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Recent treatments of diffusion in a one-dimensional disordered lattice by 
Machta using a renormalization-group approach, and by Alexander and Orbach 
using an effective medium approach, lead to a frequency-dependent (or non- 
Markoffian) diffusion coefficient. Their resUlts are confirmed by a direct calcu- 
lation of the diffusion coefficient. 
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Considerable attention has been given recently(l) to solutions of the master 
equation (or continuous time random walk equation) 

d a7 e+= ~_,(e+_l- ~) + ~(e++,- e,) (1) 

when the transition rates Wj are independent random variables. In particu- 
lar, Machta (2) has presented a renormalization-group calculation of the 
effective diffusion coefficient D(z) associated with the long time and large 
distance solutions of this equation. The variable z is a Laplace transform 
variable, in time, and may be regarded as a complex frequency. Alexander 
and Orbach (3) have presented an effective medium calculation of D(z). 
Their results, which agree with Machta's, are 

D(O = Do + D,~ '/~ + o ( 0  

1/D o = ( 1 / W )  (2) 
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The averages are taken with respect to the distribution of a single Wj. If the 
diffusion coefficient is associated to a "velocity correlation function," then 
this function has a long time tail proportional to t -3/2. 

While effective medium and renormalization arguments have great 
value in circumstances where exact calculations are difficult or impossible, 
it is sometimes desirable to check them when an exact calculation is 
possible. In this article I present an explicit derivation of Eq. (2). 

The procedure followed here is to transform the master equation from 
real space (j) to Fourier space (q); to find a "self-energy" expression for 
the diagonal part of the Green's function in Fourier space; to extract from 
this an exact expression for D(z) in the long-wavelength limit; and to 
investigate the small-z behavior of D(z). The procedure is straightforward 
but algebraically tedious. Although parts of the procedure appear to be 
arbitrary and unmotivated, the reader who follows it through will see that it 
was designed to lead as directly as possible to the desired results. 

For simplicity, attention is restricted to a finite periodic lattice of N 
sites. The space index j is always taken modulo N. The Fourier transform 
of Pj is Pq, 

1 Oq = ~ ~. Pjexp iqj (3) 
J 

Then the transform of the master equation is 

d --~ Oq -- ~] Vqq,pr (4) 
q" 

where the transition matrix V is given explicity by 

[' ] Vqq,= - [ e x p ( i q ) - 1 ]  N ~ Wjexpi(q-q')j  [exp(- iq ' ) -1]  (5) 
J 

This matrix is singular. However, it is easy to separate out the "dangerous" 
parts. Define two new matrices: 

fqq, = 8qq,[ exp(iq) - 1 ] (6) 

and 

1 Uqq, = ~ ~ Wjexp i(q - q')j (7) 
J 

Then, in matrix form, the transition matrix is 

V= - f .  U.f* (8) 

The advantage of this separation is that U is well behaved; in particular, it 
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has an inverse (as long as no Wj = 0), 

1 1 ( U - )qq, = ~ X Wj-lexp i (q - q')j (9) 
J 

The singular behavior of V is due to f at q = 0. 
The master equation may be solved formally by means of Laplace 

transforms, 

~q(z) = fo ~ dt pq( t)exp( - zt) (10) 

The solution is 

 q(Z) = Gqq,(z)oq,(O) (11) 
q" 

This introduces the Green's function G in q space, 

G - 1 _ 1 (12) 
z l  - V z l  + f . U .  f *  

If q = 0, G is simply z - l  l, and is uninteresting. But if q ~ 0, which is 
assumed in all of the following discussion, then G may be rearranged to 

G = •  I 
f* zl + f * . f -  U "f* (13) 

which can be verified by, e.g., expanding in powers of U. Further, because 
U has a well-defined inverse, G may be rearranged to 

1 i .  1 
G = -f-g . U -  f ,  . f + z . U _ ,  . F (14) 

Next, the matrix U-1  is separated into diagonal and off-diagonal parts, 

U - 1  1 - D o  1 + <, ( 1 5 )  

1 _ I j~. 1 ( 1 6 )  
D o N Wj 

1 1 1 ) e x p i ( q -  q')j  
A q q ' = N  ~j ( W) D o (17) 

By construction, Aqq = O. 

If fluctuations in the W's are neglected, so that all Wj are replaced by 
D o , then one obtains the Green's function for the uniform lattice, 

F -  1 
z l  + Do f*  . f  (18) 
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o r  

1 (19) 
Fqq, = ~qq, g + 2D0( 1 _ cosq) 

By some algebraic manipulation, G may be expressed in terms of F and 4 
as follows: 

a = r -  ~ ,  . D o ( z r -  1)-A. r . f *  

1 . D 2 z ( z F _ l ) . 4 .  1 . F , 4 . r - f *  (20) 
+ --fu 1 + DozY �9 A 

This expression is formally exact. 
The first term is diagonal in q. (That is why the factors f* and f have 

disappeared.) The second term is strictly off-diagonal, because of the single 
factor 4. The third term may have both diagonal and off-diagonal parts. 
We will focus attention on the diagonal part here; for large N, the 
off-diagonal terms are expected to be of order N -  1/2 with respect to the 
diagonal terms (the law of large numbers). The diagonal part of G is 

G~ = r~ + D~rqq(~rqq- l) 

[ 1 "F "4] (21) 
�9 4 1 + D o z Y  �9 A qq 

As is customary, we write Gqq in terms of a "self-energy" function ~q(Z) ,  

1 (22) 
Gqq(Z) - z + E q ( z )  

so that [ ~176176 I 
~ ( z )  = 2Do(1 - cosq) �9 1 + (23) 
q 1 + D 2 ( z r q q  - 1)~q 

where 

[ 1 . z r  .A l (24) r q = A .  1 + DozF.  4 qq 

In the long-wavelength limit q-~O, the function Eq(Z)  approaches 

E ( z ) ~  D ( z ) q  2 + . . .  (25) 
q 

D(z )  is the effective (non-Markoffian) diffusion coefficient for q-~ 0. In 
this limit, using (zF - 1)0 o = 0, we obtain 

D ( z )  = Doll + Do2~o] (26) 

The derivation of this formally exact expression for the effective diffusion 
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coefficient was the reason for all of the preceding tedious algebra. There 
are, of course, other equivalent expressions for D(z); this one, based on the 
separation of U-~ into diagonal and off-diagonal parts, was chosen be- 
cause the rest of the discussion is very direct. 

Up to this point, the only requirement imposed on the transition rates 
is that none of them may vanish. The expression for D(z) that was just 
derived is applicable, for example, if the transition rates are periodically 
ordered as ABABABA . . . .  

When the transition rates are independently distributed random vari- 
ables, the explicit evaluation of D (z) for small z is almost trivial. The law of 
large numbers justifies replacement of sums by averages as long as correc- 
tions of order N -  1/2 are of no interest. 

The leading term in D(z) is D 0, defined as the harmonic mean of the 
transition rates. In the limit of large N, we find 

1 1 - 1/2) D---~-~ (--~)  + O(N (27) 

where ( ) denotes the average over the distribution of a single W. If we 
neglect terms of order N -1/2, we must require that the average of 1/W 
does not diverge; this rules out consideration of an interesting class of 
problems discussed in Ref. 1. 

The next step is to expand r in powers of A, 

*0 = Y. ~'") (28) 
u>2  

where the first two terms are 

(I,( ~ = ( a z r a ) o  o (29) 

, ( ~ )  = - ( A z r a ~ r a ) o  o (30) 
Discussion of higher terms will be saved for later. Each term contains sums 
over various q's, and each Aqq, is a sum over various j 's ,  for example 

(I)(2) = E AoqzFqqAqo 
q 

1 1 1 
- 3--8 ( 3 1 )  N 2 X j k  EZrqq e-iq(j-e) 

and 

(1)(3) = -- _ _  1 1 1 1 6 - - 8  u ~ X E E  j ,~ , wj -~7 w, 

X E ~ Zrq,qfiFq=q2e - iq,(j- k }  - iqz(k- l) 
ql q2 

(32) 
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(In these equations, 1/Wj - 1/D o is abbreviated by 8 1/Wj.) By the law of 
large numbers, sums over the 81 /Wj  are well approximated by averages. 
Some typical averages are 

1 1 ~ - -  ) = ( ( ( ~ l ) 2 ) ~ j k  (33) 

1 1 1 8 - - 8  ( Wj - ~ 8 - ~ t ) = ( ( 8 1 ) 3 )  BJkd1" (34) 

Let us look first at ~b (2) . For large N, it approaches 

(( 6P (2) --> 8 -~ E zFqq (35) 
q 

Further, the sum over q may be replaced by an integral, 

lEzr~_~l f[ do z - ( z - - )  '/2 (36) 
N q ,~ z+2Do(1-cosO ) 4 D 0 + z  

Thus, in the limit z ~ 0, we find 

' 
0(2) -~ -~ 

This contribution to D(z) agrees precisely with Machta's renormalization- 
group result and Alexander and Orbach's effective medium result. It 
remains to be shown that the higher-order terms q5 (~ with v > 3 do not 
contribute to order z 1/2 

Consider next q~(3). In the limit of large N, this becomes 

qt q2 

= - ~ ~ E Yzr~,q,zr~2q~ (38) 
ql q2 

On converting the sums to integrals, we find the square of the integral that 
appeared in ~(2), so that q)(3) is of order z. 

The fourth order term is more complex; the average of A 4 is 

(Aoq~Aq~q2Aq2q3mq30) = -~"3 [(('1)4> --3((~1)2) 2] 

+ [80,q + (39) 

and contains delta functions in Fourier space. (The number of delta 
functions in the general term, of order v, varies from 0 to [v/2] - 1, where 
[x] denotes the greater integer contained in x.) Each delta function removes 
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one sum over some qi, and the number  of sums that remain varies from 
v - 1 to [(v + 1)/2]. (The special case where there are no delta functions is 
included in all of this.) Further, whenever a delta function appears, one 
factor of 1 / N  is lost, so that each remaining sum is well behaved for large 
N. When the sums over qi are converted into integrals over 0 i, the complete 
integrand of a single term contains a product of v - 1 factors such as 

z (40) 
z + 20011 - cos(0/ - -  0 j ) ]  

Let us scale each angle by z t /z ,  

0 i = z l / 2x i  (41) 

Each separate integral over 0 i introduces a factor z 1/2 times a correspond- 
ing integral over x i. In the limit z ---> 0, each factor in the complete integrand 
is independent of z, 

1 (42) 
1 + Do(X  i - x j )  2 

and the range of integration is - oo < x i < + 00. Consequently, the com- 
plete integral approaches z"/2, where/~ is the number  of variables x i. Thus, 
for example, in ~(4) the contribution from the term with no delta functions 
is of order z 3/2, and the contribution from terms with one delta function is 
of order z. The leading contribution to the general term ~(P) is of order 
z ~ where o = [(v + 1)/2]. 

In conclusion, the only contribution to D ( z )  that is of order z 1/2 comes 
from r This confirms the results of Machta  and of Alexander and 
Orbach. Both the renormalization group and the effective medium argu- 
ments work properly in this problem. 
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